Differential regulation of glucose transporter activity and expression in red and white skeletal muscle.

نویسندگان

  • J M Richardson
  • T W Balon
  • J L Treadway
  • J E Pessin
چکیده

Insulin-stimulated glucose transport activity and GLUT4 glucose transporter protein expression in rat soleus, red-enriched, and white-enriched skeletal muscle were examined in streptozotocin (STZ)-induced insulin-deficient diabetes. Six days of STZ-diabetes resulted in a nearly complete inhibition of insulin-stimulated glucose transport activity in perfused soleus, red, and white muscle which recovered following insulin therapy. A specific decrease in the GLUT4 glucose transporter protein was observed in soleus (3-fold) and red (2-fold) muscle which also recovered to control values with insulin therapy. Similarly, cardiac muscle displayed a marked STZ-induced decrease in GLUT4 protein that was normalized by insulin therapy. White muscle displayed a small but statistically significant decrease in GLUT4 protein (23%), but this could not account for the marked inhibition of insulin-stimulated glucose transport activity observed in this tissue. In addition, GLUT4 mRNA was found to decrease in red muscle (2-fold) with no significant alteration in white muscle. The effect of STZ-induced diabetes was time-dependent with maximal inhibition of insulin-stimulated glucose transport activity at 24 h in both red and white skeletal muscle and half-maximal inhibition at approximately 8 h. In contrast, GLUT4 protein in red and white muscle remained unchanged until 4 and 7 days following STZ treatment, respectively. These data demonstrate that red skeletal muscle displays a more rapid hormonal/metabolic-dependent regulation of GLUT4 glucose transporter protein and mRNA expression than white skeletal muscle. In addition, the inhibition of insulin-stimulated glucose transport activity in both red and white muscle precedes the decrease in GLUT4 protein and mRNA levels. Thus, STZ treatment initially results in a rapid uncoupling of the insulin-mediated signaling of glucose transport activity which is independent of GLUT4 protein and mRNA levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise

Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...

متن کامل

Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level.

Glucose transport in skeletal muscle is mediated by two distinct transporter isoforms, designated muscle/adipose glucose transporter (Glut4) and erythrocyte/HepG2/brain glucose transporter (Glut1), which differ in both abundance and membrane distribution. The present study was designed to investigate whether differences in insulin responsiveness of red and white muscle might be due to different...

متن کامل

Physiological regulation of glucose transporter (GLUT4) protein content in brown trout (Salmo trutta) skeletal muscle.

In brown trout, red and white skeletal muscle express the insulin-regulatable glucose transporter 4 (btGLUT4). We have previously shown that the mRNA expression of btGLUT4 in red muscle, but not white muscle, is altered under experimental conditions designed to cause changes in the plasma levels of insulin, such as fasting, insulin and arginine administration. In order to determine whether chan...

متن کامل

Physiological regulation of the expression of a GLUT4 homolog in fish skeletal muscle

Capilla, Encarnación, Mònica Dı́az, Joaquim Gutiérrez, and Josep V. Planas. Physiological regulation of the expression of a GLUT4 homolog in fish skeletal muscle. Am J Physiol Endocrinol Metab 283: E44–E49, 2002. First published March 12, 2002; 10.1152/ajpendo.00065.2002.—We have recently cloned a glucose transporter from brown trout muscle (btGLUT) with high sequence homology to mammalian GLUT4...

متن کامل

Physiological regulation of the expression of a GLUT4 homolog in fish skeletal muscle.

We have recently cloned a glucose transporter from brown trout muscle (btGLUT) with high sequence homology to mammalian GLUT4 that is predominantly expressed in red and white skeletal muscle, the two major sites of glucose uptake in trout. To study the physiological regulation of this putative fish GLUT4, we have investigated the expression of btGLUT in red and white skeletal muscle of trout in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 266 19  شماره 

صفحات  -

تاریخ انتشار 1991